

User manual for

FeatureHunter ver.1.4

Release date: Feb, 2024

About FeatureHunter

FeatureHunter was developed as the ultimate solution for untargeted nucleic acid adductomics, empowering researchers to effortlessly process data from a wide range of cutting-edge high-resolution mass spectrometry and leading MS vendors (e.g., Agilent, Thermo, and Waters).

Table of the contents

- 1. System requirements
- 2. Installation
- 3. Steps for the data processing within *FeatureHunter*
- 4. Appendix
 - A1. Installation of Visual C++ redistributable package
 - A2. Installation of .NET Framework
 - A3. Parameter settings for data format conversion in MSconvert
 - A4. Management of Feature List
 - A5. Management of Artificial Adducts List
 - A6. Examples for Tag Usage
 - A7. Configuration of data export from MZmine
 - A8. Scheme of results integration with MZmine

Recommended requirements

- 4 or more CPU cores
- 16 GB or more RAM
- 64-bit Windows 10 or later (macOS is not available)

Prerequisites

- Visual C++ redistributable package (64-bit)
- .NET Framework 4.7.2 or later (64-bit)
- FeatureHunter (ver. 1.4)
- MSConvert

- The successful running of *FeatureHunter* requires the installation of Visual C++ redistributable package and .NET Framework.
- A detailed guide for the installation of Visual C++ redistributable package and .NET Framework can be found in <u>Appendix A1 and A2</u>.
- The raw data obtained from vendor format must be converted into .mzML format (please see <u>Appendix A3</u>) for successfully running in *FeatureHunter*.

Download Software, Feature List and Example Data

9	<i>featureHunter</i> The Ultimate Data Analysis Solution for ADDUCTOMICS USER MANUAL	CONTACT US REPORT ISSUES	Fea froi	ntureHunter can be downloaded m the following link:
	Downloads			
1	Software FeatureHunter		http: eHu	s://msomics.abrc.sinica.edu.tw/Featur nter/?page_id=9
(2)	Feature List			
	List of 132 tags with descriptions download			Download the Software
	List of tag combinations for ready-to-use download			
(3	Example Data		2	Download the Feature List , which guides
Ċ	For testing the general function within FeatureHunter			extracting compounds of interest
	Mixture of modified nucleic acid standards	raw mzML		oxtracting compounds of interest
	Mixture of DNA and RNA co-treated with d0- and d8-chlorambucil	raw mzML		
	For testing the data integration between FeatureHunter and MZmine		3	Download the Example Data , available
	Mixture of modified nucleic acid standards	tsv (<i>FeatureHunter</i>) csv (MZmine)		in various formats (Thermo.raw and
	Mixture of DNA and RNA co-treated with d0- and d8-chlorambucil	tsv (<i>FeatureHunter</i>) csv (MZmine)		mzivil) and outputs (.tsv and .csv), to freely test and verify the software
	Aligned QC samples (QC1-QC3)	tsv (<i>FeatureHunter</i>) csv (MZmine)		neery tost and verify the software

Fig-1. The page for downloading the software, the list of tag descriptions and applications, and example data

Checking the download file

 New × X This PC > Local Disk (C:) > FeatureHunter_v1.3_Official MSFINDER ver 3.60 * MSDIAL ver.5.1.230912 * 1.3c Local Disk (C:) MZmine MZmine2.53 OneDrive This PC Desktop
 This PC > Local Disk (C:) > FeatureHunter_v1.3_Official MSFINDER ver 3.60 MSDIAL ver.5.1.230912 1.3c Local Disk (C:) MZmine MZmine2.53 OneDrive This PC Desktop
 MSFINDER ver 3.60 MSDIAL ver.5.1.230912 1.3c bin params FeatureHunte r.exe MZmine2.53 OneDrive This PC Desktop
 Documents Downloads Music Pictures Videos

Fig-2. The items included in the FeatureHunter download folder

Once the download is complete, the folder will contain the following four items:

- **(1)** bin: This folder contains the executable files of *FeatureHunter*.
- (2) params: This folder contains two important parameter files used in *FeatureHunter*: one for feature extraction settings and another for artificial adducts match configurations.
- 3 **FeatureHunter.exe:** The main program executable for *FeatureHunter*.
- **(4)** UserManual.pdf: A tutorial providing a guidance on how to use *FeatureHunter*.
 - For successful execution of *FeatureHunter*, place the (1) "<u>bin</u>" folder, (2) "<u>params</u>" folder, and (3) "<u>FeatureHunter.exe</u>" file in the same directory.
 - Additionally, it is recommended to store the downloaded folder on the C drive at the path: C:\FeatureHunter

3. Steps for the data processing within FeatureHunter

<u>3-1. Launch the FeatureHunter</u> [Step-1]

Fig-4. Starting the software

<u>3-2. Feature extraction (Function-1)</u> [Step-2]

- D K	
1 Resture Extraction Resture Amountation and Classification Pack Confirmation via W7mine (Ontional)	
2 Dreature Annotation and Classification Feak Confirmation via Milmine (Optional) mzML Import: Browse Add Remove C: Wixture of DNA and RNA co-treated with do- and d8-chlorambucil. mzML	
C: Wixture_of_modified_nucleic_acid_standards.mzML	(1) Select the "Feature Extraction".
Parameters Project Name: TEST1 Mass Tolerance: 5 ppm Ion Mode: • Positive Feature List: Browse C: \FeatureHunter_v1.3_Official\params\Feature_List.csv	2 Click "Browse" to import the raw data file in <u>mzML</u> format.
Artificial Adducts Browse C:\FeatureHunter_v1.3_Official\params\Artificial_Adduct_List.csv Output Folder: Browse C:\TEST RUN	As the mzML format was required, carefully refer to the parameter settings for data conversion in MSconvert provided in <u>Appendix A3</u> .

Fig-5. Interface of "Feature Extraction" in *FeatureHunter*

<u>3-2. Feature extraction (Function-1)</u> [Step-2]

J FeatureHunter	rer. 1.3	-	
eature Extraction	eature Annotation and Classification Peak Confirmation via MZmine (Optional)		
mzML Import:	wse Add Remove		
C:\Mixture_of_DNA C:\Mixture_of_mod	_and_RNA_co-treated_with_dOand_d8-chlorambucil.mzML ified_nucleic_acid_standards.mzML		
Parameters			
Project Name	TESTI (a)		
Project Name: Mass Tolerance:	TEST1 (a) 5 ppm (b)		
Project Name: Mass Tolerance: Ion Mode:	TEST1 (a) 5 ppm (b) • Positive (C)		
Project Name: Mass Tolerance: Ion Mode: Feature List:	TEST1 (a) 5 ppm (b) • Positive (C) Browse C:\FeatureHunter_v1.3_Official\params\Feature_List.csv (d)		
Project Name: Mass Tolerance: Ion Mode: Feature List: Artificial Addu	TEST1 (a) 5 ppm (b) • Positive (C) Browse C:\FeatureHunter_v1.3_Official\params\Feature_List.csv (d) ets Browse C:\FeatureHunter_v1.3_Official\params\Artificial_Adduct_List.csv (e)		

Fig-5. Interface of "Feature Extraction" in *FeatureHunter*

3 Set the parameters:

- (a) Specify a "Project Name" which will be automatically added as a prefix to the output file name. For example: **TEST1**_file name.
- (b) Set the "Mass Tolerance" with ppm for the artificial adduct match and the peak height of precursor's EIC search.
- (c) Positive ion mode is default setting.
- (d) Import the Feature List file. (The default Feature List.CSV can be found in the params folder)
- (e) Import the Artificial Adducts List file. (The default Artificial Adducts List.CSV can be found in the params folder)

The Feature List and Artificial Adducts List can be edited and are detailed in <u>Appendix A4 and A5</u>, respectively.

<u>3-2. Feature extraction (Function-1) [Step-2]</u>

© FeatureHunter ver. 1.3 – D X	
Feature Extraction Feature Annotation and Classification Feak Confirmation via MZmine (Optional) mzML Import:	 Specify the output path and folder. (The output files will be in .TSV format.)
Parameters Project Name: TEST1 Mass Tolerance: 5 ppm Ion Mode: • Positive Feature List: Browse C:\FeatureHunter_v1.3_Official\params\Feature_List.osv Artificial Adducts Browse C:\FeatureHunter_v1.3_Official\params\Artificial_Adduct_List.osv Output Folder: Browse	

1

Fig-5. Interface of "Feature Extraction" in *FeatureHunter*

When processing

Output success

Fig-6. Display of the running progress during the execution

Project name

Finished

- 🗆 X	🕲 FeatureHunter ver. 1.0 – 🗆 🗙
	Feature Extraction Feature Annotation and Classification
	mzML Import:
Progress RNA_co-treated_with_d0-and_d inucleic_acid_standards.mzML GetIndex: 3300/51632	Diffeature#Lunter_v1.0W Diffeature#Lunter_v1.0W # File 1 Diffeature#Lunter_v1.0W 2 Diffeature#Lunter_v1.0W 2 Diffeature#Lunter_v1.0W 2 Diffeature#Lunter_v1.0W 2 Diffeature#Lunter_v1.0W Cutput Folder: Browe Output Folder: Browe Add Parameters Project Name: Mass Tolerance: Potomaters Project Name: Output Folder: Browe
ogress during the execution	Fig-7. Display of the running completed
ct name Data file name	
TEST1_Mixture_of_DNA_and_RNA_co	-treated_with_d0and_d8-chlorambucil.tsv
TEST1_Mixture_of_modified_nucleic_	acid_standards.tsv

Fig-8. The results output in the specified output folder

<u>3-3. Feature Annotation and Classification (Function-2)</u> [Step-3]

- I outditor full	r. 1.3			– 🗆 X	(
Feature Extraction F	ature Annotation and Classif	ication Peak Confirmatio	on via MZmine (Optional)		
TSV Import:					
Brow	se Add Remov	e)			
C:\TEST\TEST1 Mixt	re of DNA and RNA co-treated	with dO- and d8-chlorambu	Icil.tsv		
C:\TEST\TEST1_Mixt	re_of_modified_nucleic_acid_	standards. tsv			
Parameters					(
Project Name:	TEST2 (a)				
Mass Tolerance:	5 ppm (b)	Tag use in			
		∩ (Intersection) 1,2			
RT Tolerance:	60 seconds (C)				
RT Tolerance: -Alignment of th	60 seconds (C) e output results	U (Union)			
RT Tolerance: Alignment of th ZEnable	e output results	U (Union) - (Difference)			
RT Tolerance: Alignment of th ZEnable Mass Toleran	e output results	U (Union) - (Difference)	d Clear		
RT Tolerance: Alignment of th Z Enable Mass Toleran RT Tolerance	e output results ce 5 ppm : 60 seconds	U (Union) - (Difference) Ad Tags Combination	d Clear		

Fig-9. Interface of "Feature Annotation and Classification" in *FeatureHunter*

Select the "Feature Annotation and Classification".

2 Click "Browse" to import the .TSV file that was generated from <u>Feature Extraction (Function-1)</u>.

3 Set the parameters:

- (a) Specify a "Project Name" which will be automatically added as a prefix to the output file name. For example: TEST2_TEST1_file name.
- (b) Set the "Mass Tolerance" with ppm for the feature classification.
- (c) Set the "RT Tolerance" with seconds for the feature classification.

<u>3-3. Feature Annotation and Classification (Function-2)</u> [Step-3]

SeatureHunter ver. 1.3	-		×
Feature Extraction Feature Annotation and Classification Peak Confirmation via MZmine (Optional)			
TSV Import: Browse Add Remove C:\TEST\TEST1_Mixture_of_DNA_and_RNA_coo-treated_with_dOand_d8-chlorambucil.tsv C:\TEST\TEST1_Mixture_of_modified_nucleic_acid_standards.tsv			
Parameters Project Name: TEST2 4			
Mass Tolerance: 5 ppm Tag use in RT Tolerance: 60 seconds ∩ (Intersection) Alignment of the output results ∪ (Union) ✓ Enable - (Difference)			
Mass Tolerance 5 ppm Add Clear RT Tolerance: 60 seconds Tags Combination [1]∩[2]			
Output Folder: Browse C:\TEST		RUN	

Fig-9. Interface of "Feature Annotation and Classification" in FeatureHunter

- **4** Use tags to classify the annotated features.
 - The tags that can be used correspond to the Feature List.csv file located in the params folder.
 - The identity of each tag is described in <u>'List of</u> <u>132 tags with descriptions</u>' which can be downloaded from website.
 - Tags can be inputted individually or in combination using the intersection (∩), union (U), or difference (-) functions.
 - Multiple tags can be inputted by separating them with a comma.
 - Leaving the field blank is allowed if the function is not being used.

<u>3-3. Feature Annotation and Classification (Function-2)</u> [Step-3]

G FeatureHunter ve	r. 1.3								Х		
Feature Extraction Fe	ature Annotati	on and Classi	fication	Peak Confir	mation via 1	MZmine (Optional)					
TSV Import:											
Browse Add Remove											
C:\TEST\TEST1_Mixture_of_DNA_and_RNA_co-treated_with_dOand_d8-chlorambucil.tsv											
C. (IESI (IESII_MIXU	re_or_modified		u_standards.	124							
Parameters											
Project Name:	TEST2										
Mass Tolerance:	5	ppm	-Tag use i	n							
RT Tolerance:	60	seconds	∩ (Int	ersection)	1,2			_			
(5) Alignment of the	e output result	ts	U (Uni	on)							
🗹 🔽 Enable			– (Diff	erence)							
Mass Toleran	_{ce} 5	ppm			Add	Clear					
RT Tolerance	: 60	seconds	Tags Co	ombination	[1]∩[2]						
Output Folder: Brow	C: \TEST							RUN			
DI OR											

Fig-9. Interface of "Feature Annotation and Classification" in FeatureHunter

(Optional) Alignment of the output results.

- At least two .TSV file inputs are required for alignment.
- Enabling this option means that the classified results are generated from multiple sample analyses, and they are further aligned to create an aligned feature peak list with precursor ion m/z, retention time (RT), and peak intensity.
- Set the "Mass Tolerance" in ppm to align the ion signals across different datasets.
- Set the "RT Tolerance" in seconds to align the ion signals across different datasets based on their RT.
- Signal alignment was initiated using the m/z and RT values obtained from importing the first dataset (.tsv).
- The notation 'n/a' indicated the absence of aligned signals in the current data.

ture Extraction	Feature Annot	ation and Clas:	sification Peak Confi	rmation via	MZmine (Optional)	
SV Import:							
Br	owse	Add Ke	move				
C:\TEST\TEST1_Mix	ture_of_DNA_s	and_RNA_co-trea	ted_with_d0and_d8-ch	orambucil.ts	,		
C: \TEST\TEST1_M13	ture_of_modif	tied_nucleic_ac	id_standards.tsv				
Parameters							
Parameters							
Parameters Project Name:	TEST2						
Parameters Project Name:	TEST2						
Parameters Project Name: Mass Tolerance:	TEST2	DDW	Tag use in				
Parameters Project Name: Mass Tolerance:	TEST2	ppm	Tag use in	1, 2			
Parameters Project Name: Mass Tolerance: RT Tolerance:	TEST2 5 60	ppm seconds	Tag use in ∩ (Intersection)	1,2)
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of	TEST2 5 60	ppm seconds	Tag use in ∩ (Intersection) ∪ (Union)	1, 2)
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of	TEST2 5 60 the output res	ppm seconds sults	Tag use in ∩ (Intersection) ∪ (Union)	1, 2]
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of C Enable	TEST2 5 60 the output res	ppm seconds sults	Tag use in ∩ (Intersection) ∪ (Union) - (Difference)	1, 2			
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of C Enable Mass Toler	TEST2 5 60 the output res	ppm seconds sults	Tag use in ∩ (Intersection) ∪ (Union) - (Difference)	1, 2	fleer		
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of C Enable Mass Toler	TEST2 5 60 the output res ance 5	ppm seconds sults ppm	Tag use in ∩ (Intersection) ∪ (Union) - (Difference)	1, 2	Clear		
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of Enable Mass Toler RT Toleran	TEST2 5 60 the output res ance 5 60	ppm seconds sults ppm seconds	Tag use in ∩ (Intersection) ∪ (Union) - (Difference) Tags Combination	1, 2 	Clear)
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of Enable Mass Toler RT Toleran	TEST2 5 60 the output res ance 5 60	ppm seconds sults ppm seconds	Tag use in ∩ (Intersection) ∪ (Union) - (Difference) Tags Combination	1, 2 	Clear)
Parameters Project Name: Mass Tolerance: RT Tolerance: Alignment of @ Enable Mass Toler RT Toleran	TEST2 5 60 the output res ance 5 60	ppm seconds sults ppm seconds	Tag use in ∩ (Intersection) ∪ (Union) - (Difference) Tags Combination	1, 2	Clear)
Parameters Project Name: Mass Tolerance: Alignment of @ Enable Mass Toler RT Toleran	TEST2 5 60 the output res ance 5 	ppm seconds sults ppm seconds	Tag use in ∩ (Intersection) ∪ (Union) - (Difference) Tags Combination	1, 2 	Clear	7	

Fig-9. Interface of "Feature Annotation and Classification" in *FeatureHunter*

6 Specify the output path and folder. (The output files will be in .TSV format.)

7 Click "RUN" to start execution.

Finished

O FeatureHunte	ver. 1.0 — 🗆 🗙		
Feature Extraction 1 TSV Import:	eature Annotation and Classification Browse Add Remove		
D:\FeatureHunter D:\FeatureHunter	VI.0/1EX OProgress VI.0/TEX File Progress # File Progress 1 D/FeatureHunter_v1.0/TEST1_Mixture_of_DNA_and_RNA_co-treated_with_d0and_d8 done. 2 D/FeatureHunter_v1.0/TEST1_Mixture_of_modified_nucleic_acid_standards.tsv done. 3 Alienment done	×	Output success
Parameters Project Name: Mass Tolerance RT Tolerance: Tag use in	Running success		TEST2_alignment.tsv (Aligned results generated from the alignment of [1] and [2]) [1] TEST2_TEST1_Mixture_of_DNA_and_RNA_co-treated_with_d0and_d8-chlorambucil.tsv [2] TEST2_TEST1_Mixture_of_modified_nucleic_acid_standards.tsv
∩ (Interse U (Union - (Differe:	ce)		Fig-11. The individual classified peak list (i.e., [1] and [2]) as well as the aligned results, which are output in the specified output folder
Output Folder:	Browse OK		

Fig-10. Display of the running completed

An example of output results from feature annotation and classification (Format-1)

■ The output results can be viewed in excel

⇒ When using a tag with category 1 or 2 (see Appendix A4)

Information of detected MS ¹ ions							Information of detected MS ² ions				Informa detected	ation of features	5	
/								K					<u> </u>	
assification	MS1 Scan	RT	Precursor	Precursor	Precursor	MS	Collision	Collision	MS2 Scan	Product Ion	Product Ion	Delta Mass	Mass Error	Tags
by tag	Number	(min)	Ion m/z	Ion Intensity	Ion Charge	Level	Туре	Energy	Number	m/z	Intensity	(Da)	(ppm)	matched
1	2877	3.45	252.108627	1.72E+05	na	2	beam-type collision-induced dissociation	60	2934	136.061523	1.64E+04	116.047104	2.07	1, 124
1	4601	5.43	224.102966	5.57E+05	1	2	beam-type collision-induced dissociation	60	4647	108.055565	1.42E+04	116.047401	0.49	1
1	5897	6.94	294.119659	2.61E+05	1	2	beam-type collision-induced dissociation	60	5952	178.07222	5.41E+04	116.04744	0.82	1, 124
1	6183	7.28	340.150024	7.85E+04	na	2	beam-type collision-induced dissociation	60	6242	224.102753	3.10E+04	116.047272	0.62	1,124
1	6435	7.57	252.109085	1.04E+05	1	2	beam-type collision-induced dissociation	60	6492	136.061661	3.99E+04	116.047424	0.69	1, 115, 124
1	6794	7.98	228.097778	2.52E+05	na	2	beam-type collision-induced dissociation	60	6847	112.050697	1.78E+04	116.047081	2.27	1, 85
1	7082	8.3	242.113373	1.16E+04	na	2	beam-type collision-induced dissociation	60	7123	126.066032	1.40E+04	116.04734	0.03	1
1	7082	8.31	280.090302	2.50E+05	1	2	beam-type collision-induced dissociation	60	7133	164.043304	7.81E+04	116.046997	2.99	1
1	7082	8.32	290.134613	6.87E+04	na	2	beam-type collision-induced dissociation	60	7143	174.087036	1.72E+04	116.047577	2.01	1, 124, 126
1	7405	8.67	258.108398	8.50E+06	1	2	beam-type collision-induced dissociation	60	7442	142.060913	6.54E+04	116.047485	1.22	1,124
1	8478	9.93	252.109009	1.86E+05	1	2	beam-type collision-induced dissociation	60	8526	136.061813	4.56E+04	116.047195	1.28	1, 116, 124
1	8478	9.94	229.081787	4.84E+04	na	2	beam-type collision-induced dissociation	60	8537	113.034416	1.74E+04	116.047371	0.23	1,90
1	8622	10.09	259.092316	6.78E+05	1	2	beam-type collision-induced dissociation	60	8668	143.04483	1.60E+04	116.047485	1.22	1, 85, 101, 124, 125
1	8622	10.1	281.07431	6.80E+05	1	2	beam-type collision-induced dissociation	60	8670	165.027008	3.36E+04	116.047302	0.36	1,124
1	9269	10.84	284.09906	5.86E+04	na	2	beam-type collision-induced dissociation	60	9310	168.051743	1.33E+04	116.047318	0.23	1, 124, 125
1	9269	10.86	294.06958	6.06E+04	na	2	beam-type collision-induced dissociation	60	9334	178.022522	1.54E+04	116.047058	2.46	1

 $\hat{\Gamma}$

Cl

The output results were automatically <u>classified</u> based on the **tag** [1].

lons classified with Tag [1] are accompanied by <u>annotations</u> of **all matching tags**.

An example of output results from feature annotation and classification (Format-2)

The output results can be viewed in excel

⇒ When using a tag with category 3 only (see <u>Appendix A4</u>)

			Informa	ation of de with	tected MS ¹ specific de	peak pair (l lta mass	MS¹-MS¹')	Inform detected	ation of d features		
				r	I				ـ ــــ		
Classification by tag	MS Level	MS1 Scan Number	RT (min)	Precursor Ion m/z	Precursor Ion Intensity	Precursor Ion' m/z	Precursor Ion' Intensity	Delta Mass (Da)	Mass Error (ppm)	Artificial Adducts	Tags matched
124	1	2269	2.68	268.103972	3.69E+05	152.056664	7.74E+04	116.047308	0.31317	na	2, 83, 124, 125
124	1	2301	2.72	282.119527	2.73E+06	166.072272	3.24E+05	116.047255	0.768416	na	2, 12, 83, 124, 125, 126
124	1	2337	2.76	282.119566	1.61E+07	166.072322	2.26E+05	116.047244	0.862321	M+H	2, 124, 125, 126
124	1	2337	2.76	252.109154	5.18E+04	136.061833	9.45E+05	116.047322	0.193297	M+H	2, 124, 125, 126
124	1	2445	2.88	282.119651	6.97E+06	166.072299	8.55E+04	116.047352	0.072958	na	2, 12, 83, 85, 124, 125, 126
124	1	2481	2.92	282.119589	4.68E+06	166.072272	6.32E+04	116.047316	0.237533	na	2, 124, 125, 126
124	1	2517	2.97	252.109028	3.36E+04	136.061869	6.83E+05	116.047159	1.596199	na	1, 124
124	1	2553	3.01	268.104079	7.91E+04	152.056488	1.43E+04	116.047591	2.126877	na	2, 83, 124, 125
124	1	2589	3.05	282.119682	1.90E+06	166.072339	6.81E+04	116.047343	0.01156	na	2, 12, 83, 124, 125, 126
124	1	2697	3.17	268.104118	7.97E+04	152.056628	1.87E+04	116.04749	1.256413	M+H	2, 83, 124, 125
124	1	2697	3.17	252.108951	3.10E+04	136.061897	5.84E+05	116.047054	2.501978	M+H	2, 83, 124, 125
124	1	2733	3.21	282.11972	8.10E+05	166.072384	4.49E+04	116.047336	0.073181	na	2, 12, 124, 125, 126
124	1	2841	3.34	268.104094	1.05E+05	152.056656	2.03E+04	116.047438	0.812335	na	2, 124, 125
124	1	2877	3.38	282.119548	6.35E+05	166.072311	4.72E+04	116.047237	0.921835	na	2, 12, 124, 125, 126
124	1	2877	3.38	252.108668	3.75E+04	136.06181	5.91E+05	116.046857	4.193028	na	2, 12, 124, 125, 126
124	1	2913	3.42	282.119506	6.63E+05	166.072277	6.56E+04	116.047229	0.987507	na	2, 124, 125, 126
124	1	2985	3.5	268.104049	8.00E+04	152.056569	1.14E+04	116.047481	1.179333	na	2, 124, 125
124	1	3021	3.55	282.119591	3.83E+05	166.072323	4.89E+04	116.047269	0.648275	na	2, 124, 125, 126

An example of output results from feature annotation and classification (Format-3)

■ The output results can be viewed in excel

When using a tag with categories 1 and 3, or 2 and 3 (see <u>Appendix</u> A4)

Information of

detected features

Information of detected MS¹ peak pair (MS¹-MS¹)

with specific delta mass

										^						
Classification by tag	MS1 Scan Number	RT (min)	Precursor Ion m/z	Precursor Ion Intensity	Precursor Ion' m/z	Precursor Ion' Intensity	Precursor Charge	Artificial Adducts	Collision Type	Collision Energy	MS2 Scan Number	Product Ion m/z	Product Ion Intensity	Delta Mass (Da)	Mass Error (ppm)	Tags matched
1	2877	3.38	252.108627	172477	na	na	na	na	beam-type collision-induced dissociation	60	2934	136.061523	16350	116.047104	2.06914	1, 124
124	2877	3.38	252.108668	37494	136.06181	590747	na	na	beam-type collision-induced dissociation	60	2934	na	na	116.046857	4.193028	1, 124
1	5897	6.88	294.119659	260874	na	na	1	na	beam-type collision-induced dissociation	60	5952	178.07222	54128	116.04744	0.823588	1, 124
124	5897	6.88	294.119626	200344	178.072346	92776	1	na	beam-type collision-induced dissociation	60	5952	na	na	116.04728	0.5541	1, 124
1	6183	7.21	340.150024	78517	na	na	na	na	beam-type collision-induced dissociation	60	6242	224.102753	31030	116.047272	0.622776	1, 124
124	6183	7.21	340.150061	32461	224.102921	42516	na	na	beam-type collision-induced dissociation	60	6242	na	na	116.04714	1.755252	1, 124
1	6435	7.5	252.109085	103807	na	na	1	na	beam-type collision-induced dissociation	60	6492	136.061661	39865	116.047424	0.6921	1, 115, 124
124	6435	7.5	252.109108	83616	136.061877	2128054	1	na	beam-type collision-induced dissociation	60	6492	na	na	116.047232	0.967764	1, 115, 124
1	7082	8.25	290.134613	68731	na	na	na	na	beam-type collision-induced dissociation	60	7143	174.087036	17248	116.047577	2.006977	1, 124, 126
124	7082	8 25	290 134682	44477	174 087219	13692	na	na	heam-type collision-induced dissociation	60	7143	na	na	116 047463	1.028847	1 124 126

Information of

detected MS² ions

<u>3-4. Peak Confirmation via MZmine (optional function)</u> [Step-4; optional]

ture Extraction Fe	ature Annotation and Classification Peak C	onfirmation via MZmine (Optional)
SV Import:		
Drowse		
Amine Result Import		
Drowse		
4 Add	Remove	
#	TSV	MZmine Kesults
C:\TEST\TEST	TSV 2_Tag1_124_TEST1_Mixture_of_modified_nu	MLmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs
C:\TEST\TEST C:\TEST\TEST C:\TEST\TEST	TSV 2_Tag1_124_TEST1_Mixture_of_modified_nu 2_Tag1_TEST1_Mixture_of_modified_nuclei 2_Tag124_TEST1_Mixture_of_modified_nucl	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
C:\TEST\TEST C:\TEST\TEST 3 C:\TEST\TEST	TSV '2_Tag1_124_TEST1_Mixture_of_modified_nu '2_Tag1_TEST1_Mixture_of_modified_nuclei '2_Tag124_TEST1_Mixture_of_modified_nucl	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
C:\TEST\TEST C:\TEST\TEST C:\TEST\TEST C:\TEST\TEST	TSV '2_Tag1_124_TEST1_Mixture_of_modified_nu '2_Tag1_TEST1_Mixture_of_modified_nuclei '2_Tag124_TEST1_Mixture_of_modified_nucl	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
C:\TEST\TEST C:\TEST\TEST C:\TEST\TEST C:\TEST\TEST	TSV '2_Tag1_124_TEST1_Mixture_of_modified_nu '2_Tag1_TEST1_Mixture_of_modified_nuclei '2_Tag124_TEST1_Mixture_of_modified_nucl	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
# C:\TEST\TEST 2 C:\TEST\TEST 3 C:\TEST\TEST Parameters	TSV "2_Tag1_124_TEST1_Mixture_of_modified_nu "2_Tag1_TEST1_Mixture_of_modified_nuclei "2_Tag124_TEST1_Mixture_of_modified_nucl	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
# C:\TEST\TEST C:\TEST\TEST C:\TEST\TEST Parameters Project Name:	TSV 2_Tag1_124_TEST1_Mixture_of_modified_nu 2_Tag1_TEST1_Mixture_of_modified_nuclei 2_Tag124_TEST1_Mixture_of_modified_nucl Integrate	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
# C:\TEST\TEST 2 C:\TEST\TEST 3 C:\TEST\TEST Parameters Project Name:	TSV 2_Tag1_124_TEST1_Mixture_of_modified_nu 2_Tag1_TEST1_Mixture_of_modified_nuclei 2_Tag124_TEST1_Mixture_of_modified_nucl Integrate 20	MZmine Kesults C: \MZmine_Mixture of modified nucleic acid standards.cs C: \MZmine_Mixture of modified nucleic acid standards.cs C: \MZmine_Mixture of modified nucleic acid standards.cs
# C:\TEST\TEST 3 C:\TEST\TEST 3 C:\TEST\TEST Parameters Project Name: Mass Tolerance:	TSV 2_Tag1_124_TEST1_Mixture_of_modified_nu 2_Tag1_TEST1_Mixture_of_modified_nuclei 2_Tag124_TEST1_Mixture_of_modified_nucl Integrate 20 ppm	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs
# C:\TEST\TEST 3 C:\TEST\TEST 3 C:\TEST\TEST Parameters Project Name: Mass Tolerance: RT Tolerance:	TSV 2_Tag1_124_TEST1_Mixture_of_modified_nu 2_Tag1_TEST1_Mixture_of_modified_nuclei 2_Tag124_TEST1_Mixture_of_modified_nucl Integrate 20 ppm 90 seconds	MZmine Kesults C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs C:\MZmine_Mixture of modified nucleic acid standards.cs

Fig-12. Interface of "Peak Confirmation via MZmine" in FeatureHunter

- Select the "(optional) Peak Confirmation via MZmine".
- 2 Click "Browse" to import the .tsv file that was generated from <u>Feature Annotation and</u> <u>Classification (Function-2; step-3)</u>.
- Click "Browse" to import the .csv file that was outputted from MZmine¹.
- Click "Add" to submit the data file imported from *FeatureHunter* (.tsv) and MZmine (.csv) for data integration².
- The configuration of the required elements in MZmine's output file is described in Appendix A6.
- FeatureHunter enables integrating single, multiple results (from different tags), or aligned results (from different samples) with the MZmine file. (see <u>Appendix A7</u>)

V Import:		
Browse		
mine Result Imp	ort:	
Browse		
Add	Remove	
	TSV	MZmine Results
C:\TEST\T	ST2 Tag1 124 TEST1 Mixture of modified nu	C: \MZmine Mixture of modified nucleic acid standards cay
C:\TEST\T C:\TEST\T C:\TEST\T	ZST2_Tag1_124_TEST1_Mixture_of_modified_nu ZST2_Tag1_TEST1_Mixture_of_modified_nuclei ZST2_Tag124_TEST1_Mixture_of_modified_nucl	C:VMZmine_Mixture of modified nucleic acid standards.csv C:VMZmine_Mixture of modified nucleic acid standards.csv C:VMZmine_Mixture of modified nucleic acid standards.csv
C:\TEST\T C:\TEST\T C:\TEST\T C:\TEST\T	3ST2_Tag1_124_TEST1_Mixture_of_modified_nu 3ST2_Tag1_TEST1_Mixture_of_modified_nuclei 3ST2_Tag124_TEST1_Mixture_of_modified_nucl	C:VMZmine_Mixture of modified nucleic acid standards.csv C:VMZmine_Mixture of modified nucleic acid standards.csv C:VMZmine_Mixture of modified nucleic acid standards.csv
C:\TEST\T C:\TEST\T C:\TEST\T C:\TEST\T Project Name:	IST2_Tag1_124_TEST1_Mixture_of_modified_nu ST2_Tag1_TEST1_Mixture_of_modified_nuclei SST2_Tag124_TEST1_Mixture_of_modified_nucl	C:VMZmine_Mixture of modified nucleic acid standards.csv C:VMZmine_Mixture of modified nucleic acid standards.csv C:VMZmine_Mixture of modified nucleic acid standards.csv
C:\TEST\T C:\TEST\T C:\TEST\T C:\TEST\T Yarameters Project Name: Mass Tolerance:	IST2_Tag1_124_TEST1_Mixture_of_modified_nu IST2_Tag1_TEST1_Mixture_of_modified_nuclei IST2_Tag124_TEST1_Mixture_of_modified_nucl Integrate (a) 20 ppm (b)	C: VMZmine_Mixture of modified nucleic acid standards.csv C: VMZmine_Mixture of modified nucleic acid standards.csv C: VMZmine_Mixture of modified nucleic acid standards.csv

Fig-12. Interface of "Peak Confirmation via MZmine" in FeatureHunter

5 Set the parameters:

- (a) Specify a "Project Name" which will be automatically added as a prefix to the output file name. For example: Integrate_file name
- (b) Set the "Mass Tolerance" with ppm for intersecting the precursor ion m/z between *FeatureHunter's* and MZmine's output lists.
- (c) Set the "RT Tolerance" with seconds for intersecting the precursor ion RT between *FeatureHunter's* and MZmine's output lists.

Specify the output path and folder. (The output files will be in .csv format.)

⑦ Click "RUN" to start execution.

Finished

Output success

Integrate_TEST2_Tag1_124_TEST1_Mixture_of_modified_nucleic_acid_standards.tsv

Integrate_TEST2_Tag1_TEST1_Mixture_of_modified_nucleic_acid_standards.tsv

Integrate_TEST2_Tag124_TEST1_Mixture_of_modified_nucleic_acid_standards.tsv

Fig-13. The integrated results between *FeatureHunter* and MZmine are output in the specified output folder.

An example of output results from data integration

■ The output results can be viewed in excel

Information from FeatureHunter

L

Information from MZmine

L

							~											
Classification	MS1 Scan	RT	Precursor	Precursor	Precursor	MS	Collision	Collision	MS2 Scan	Product Ion	Product Ion	Delta Mass	Mass Error	Tags	MZmine	MZmine	MZmine RT	Daolt orac
by tag	Number	(min)	Ion m/z	Ion Intensity	Ion Charge	Level	Туре	Energy	Number	m/z	Intensity	(Da)	(ppm)	matched	ID	m/z	(min)	Peak area
1	2255	7.99	494.136383	7.45E+06	1	2	collision-induced dissociation	40	2295	378.088562	1220189	116.047821	4.110778	1, 2, 7, 124,	2938	494.1368	7.905525	6.73E+07
1	2255	8.01	559.147583	2.94E+05	1	2	collision-induced dissociation	40	2308	443.100342	98717	116.047241	0.885751	1,4	NA	NA	NA	NA
1	2255	8.01	324.129883	2.81E+05	na	2	collision-induced dissociation	40	2311	208.082291	119030	116.047592	2.138464	1, 115, 117	NA	NA	NA	NA
1	2255	8.02	230.11331	2.42E+05	1	2	collision-induced dissociation	40	2323	114.065712	145648	116.047598	2.188721	1	NA	NA	NA	NA
1	2293	8.04	228.097809	9.79E+06	1	2	collision-induced dissociation	40	2336	112.050041	149816	116.047768	3.650572	1,85,115	74	228.098	7.946975	1.56E+08
1	2293	8.06	474.182556	9.67E+05	na	2	collision-induced dissociation	40	2362	358.135284	57329	116.047272	0.622776	1, 124	NA	NA	NA	NA
1	2331	8.11	562.111755	1.69E+05	1	2	collision-induced dissociation	40	2400	446.063873	51605	116.047882	4.636729	1	3682	562.111	7.905525	2.65E+06
1	2369	8.11	344.145508	1.41E+05	na	2	collision-induced dissociation	40	2405	228.09761	22417	116.047897	4.768217	1, 4, 85, 124	NA	NA	NA	NA
1	2369	8.12	455.187836	1.94E+08	1	2	collision-induced dissociation	40	2406	339.140961	42771	116.046875	4.041454	1, 12	2678	455.1884	7.905525	3.07E+09
1	2369	8.15	554.080566	2.14E+05	na	2	collision-induced dissociation	40	2434	438.033112	73726	116.047455	0.955076	1	NA	NA	NA	NA
1	2404	8.17	288.041168	7.21E+05	na	2	collision-induced dissociation	40	2451	171.994156	10244	116.047012	2.858065	1	883	288.0413	7.988232	1.06E+07
1	2404	8.19	282.149597	9.25E+04	na	2	collision-induced dissociation	40	2474	166.102386	13120	116.047211	1.148726	1	NA	NA	NA	NA
1	2441	8.2	310.088409	9.33E+06	1	2	collision-induced dissociation	40	2483	194.040573	818125	116.047836	4.242266	1	1167	310.0885	7.988232	1.13E+08
1	2477	8.28	296.072845	4.07E+05	na	2	collision-induced dissociation	40	2549	180.02507	25570	116.047775	3.716316	1	964	296.0727	7.988232	4.04E+06
1	2550	8.34	290.176208	1.47E+05	1	2	collision-induced dissociation	40	2604	174.128403	26686	116.047806	3.979291	1	NA	NA	NA	NA
1	2588	8.36	261.127411	1.41E+06	na	2	collision-induced dissociation	40	2627	145.079529	1520372	116.047882	4.636729	1	512	261.1274	8.277544	1.48E+07
1	2626	8.41	343.117889	5.03E+05	1	2	collision-induced dissociation	40	2673	227.070267	37964	116.047623	2.401439	1, 124	1572	343.1178	8.277544	3.89E+06
1	2626	8.42	258.108643	4.96E+04	na	2	collision-induced dissociation	40	2683	142.06073	59294	116.047913	4.899704	1,2	436	258.1086	9.531694	7.58E+07

NA indicates that the ions were not detected in MZmine. It is recommended to exclude these ions from the final results due to their low peak quality and confidence.

Visual Studio 2015, 2017, 2019, and 2022

This table lists the latest supported English (en-US) Microsoft Visual C++ Redistributable packages for Visual Studio 2015, 2017, 2019, and 2022. The latest supported version has the most recently implemented C++ features, security, reliability, and performance improvements. It also includes the latest C++ standard language and library standards conformance updates. We recommend that you install this version for all applications created using Visual Studio 2015, 2017, 2019, or 2022.

Unlike older versions of Visual Studio, which have infrequent redist updates, the version number isn't listed in the following table for Visual Studio 2015-2022 because the redist is updated frequently. To find the version number of the latest redist, download the redist you're interested in using one of the following links. Then, look at its properties using Windows File Explorer. In the **Details** pane, the **File version** contains the version of the redist.

Architecture	e Link	Notes
ARM64	https://aka.ms/vs/17/release/vc_redist.arm64.exe ⊮	Permalink for latest supported ARM64 version
X86	https://aka.ms/vs/17/release/vc_redist.x86.exe ⊠	Permalink for latest supported x86 version
X64	https://aka.ms/vs/17/release/vc_redist.x64.exe ⊵	Permalink for latest supported x64 version. The X64 Redistributable
	Download and install	makes it easy to install required Visual C++ ARM64 binaries. This package the X64 Redistributable is installed on an ARM64 device.

Fig-A1. The page for downloading Visual C++ redistributable package

Visual C++ redistributable package can be downloaded from the official website of Microsoft:

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170

Fig-A2. The page for downloading .NET Framework

.NET Framwork can be downloaded from the official website of Microsoft:

https://dotnet.microsoft.com/en-us/download/dotnet-framework/net472

4. Appendix-A3

🖳 MSConvertGUI (64-bit)	- 🗆 X
List of Files O File of file names File: Add Remove	Browse network resource V
E:\Service\Ueff'20210813_CSMU\RAW\MixAll_CIDwH	Subset MS levels: - Charge states: - Scan number: - Number of data points: - Scan time (seconds): - Collision energy: - • Scan event: - Activation type: Any • Scan polarity: Any • Any •
E:ServiceVeffV20210813_CSMU\RAW Browse Options Output format Output format mzML ~ Extension: Binary encoding precision: Write index: Use zlib compression:	Add Remove Filter Parameters
TPP compatibility: Package in gzip: Use numpress linear compression: Use numpress short logged float compression: Use numpress positive integer compression: Combine ion mobility scans: SIM as spectra: SRM as spectra:	
Presets: Generic Defaults 🗸 🗸	Save Preset 💌 Files to convert in parallel: 5 🛖 Start

MSConvert can be downloaded from the website:

https://proteowizard.sourceforge.io/download.html

Fig-A3. Recommended setting parameter for converting data from vendor's format to mzML

	A (1)) B (2)) C (3)	D(4)	E 5) F (6)	G (7)	н (8)	I (9)
	Tag No.	Tag	Tag	Mass	Intensity	Top N lon by	Consecutive	Minimum	Maximum
		Category	Parameters	Tolerance	Cutoff	Intensity (MS2;	Data Points	Intensity Ratio	Intensity Ratio
			(Da or m/z)	(ppm)	(height)	only for tag	(MS1; only for	(MS1/MS1'; only	(MS1/MS1'; only
						category 1-2)	tag category 3)	for tag category	for tag category 3)
1								3)	
2	1	1	116.047344	5	10000	20	0	0	0
3	2	1	132.042258	5	10000	20	0	0	0
4	3	1	146.057908	5	10000	20	0	0	0
79	78	2	151.049409	5	10000	20	0	0	0
80	79	2	152.056686	5	10000	20	0	0	0
81	80	2	135.030137	5	10000	20	0	0	0
106	105	3	3.01883	5	10000	0	5	0.7	1.3
107	106	3	-3.01883	5	10000	0	5	0.7	1.3

Fig-A4. The management of Feature List.csv

1. Tag No.: Tag No. is utilized to characterize the tag parameters in *FeatureHunter*. Each tag represents a specific feature or characteristic that can be assigned to annotated data for classification purpose. The default Tag No. ranges from 1 to 132. Users have the flexibility to manage the feature list by adding, editing, or removing tags as needed.

2. Tag Category.: Tag category is utilized to classify tags into three types.

These categories include:

Tag category 1: neutral loss of a particular functional group.

Tag category 2: specific diagnostic product ion m/z in MS².

Tag category 3: a fixed delta mass in MS¹.

3. Tag Parameters: Tag parameters are utilized to extract the diagnostic features of the analytes of interest obtained from MS¹ or MS² raw data.

4. Mass Tolerance: Mass tolerance is utilized for tag parameters with a default value of 5 ppm. Users can adjust this value to meet their data quality requirements.

5. Intensity Cutoff (height): Intensity cutoff is utilized to filter features (such as product ions or peak pairs) based on their peak height, retaining only those above the cutoff value. The default value is 10000. Users can adjust this value to meet their data quality requirements.

6. Top N ion by intensity: The Top N ions filter is utilized to retain product ions with intensity rankings within the top N in the MS² spectrum. This function is applicable only to categories 1 and 2. The default value is 20. Users can adjust this value to meet their data quality requirements. The function can be disable by setting the value to zero.

7. Consecutive Data Points: Consecutive data points are utilized to filter specific MS¹ peak-pairs with a fixed delta mass across consecutive MS¹ spectra (data points). This function is applicable only to category 3. The default value is 5. Users can adjust this value to meet their data quality requirements. The function can be disable by setting the value to zero.

8. Minimum Intensity Ratio: The minimum intensity ratio is utilized to filter specific MS¹ peak-pairs based on a specified intensity ratio. The default value is 0.7. Users can adjust this value to meet their data quality requirements. The function can be disable by setting the value to zero.

Precursor ion

- Intensity ratio of peak-pairs:

Precursor ion'

9. Maximum Intensity Ratio : The maximum intensity ratio is utilized to filter specific MS¹ peak-pairs based on a specified intensity ratio. The default value is 1.3. Users can adjust this value to meet their data quality requirements. The function can be disable by setting the value to zero.

Precursor ion

- Intensity ratio of peak-pairs:

Precursor ion'

	(1)	(2)	(3)
	A	В	C
1	Artificial Adduct No.	Artificial Adduct m/z	Artificial Adduct Name
2	1	21.981945	M+Na-H
3	2	37.955882	M+K-H
4	3	17.026549	M+NH3
5	4	32.026214	M+MeOH
6	5	60.057514	M+IPA
7	6	78.013935	M+DMSO
8	7	46.041864	M+EtOH

Fig-A5. The management of Artificial Adducts List

1. Artificial Adduct No.: The ID of each artificial adduct in the list.

2. Artificial Adduct m/z: Artificial Adduct m/z is used to annotate the adduct ion of the precursor ion in the MS¹ spectrum. The default artificial adduct list comprises 13 common artificial adducts. Users have the flexibility to manage the feature list by adding, editing, or removing artificial adducts as needed.

3. Artificial Adduct Name: Artificial Adduct name is used for characterizing the identity of artificial adducts.

Example:

	Please set the parameters
Feature lists	0 selected As selected in main window 📀
Filename	/20231115_QC_ailgned.csv last
Field separator	,
Export common elements	 Export row ID Export row m/z Export row retention time Export row identity (main ID) Export row identity (all IDs) Export row identity (main ID + details) Export row comment
Export data file elements	 Peak RT start Peak RT end Peak duration time Peak height Peak area Peak charge Peak # data points
Export quantitation results and other information	
Identification separator	;

FeatureHunter has been verified to support data integration with file exported from both older (2.53) and latest versions (3.90) of MZmine.

The processed results, exported as a .CSV file from MZmine, should include the following elements:

- (1) Row ID
- (2) Row m/z
- (3) Row retention time
- (4) Peak area

When exporting data from MZmine 3, select "Export CSV (legacy MZmine 2)".

Fig-A6. The configuration of required elements for data output from MZmine

We welcome your feedback and comments, as they can greatly contribute to enhancing the development of the software.

If you encounter any issues with *FeatureHunter*, please include the following information in your issue report:

(1) The version of FeatureHunter.

(2) Screenshots of error messages or unexpected results.

(3) Any additional information that could help us better understand the challenges or bugs you're encountering.

Please leave your feedback and comments at the following link: https://msomics.abrc.sinica.edu.tw/FeatureHunter/?page_id=271

Agricultural Biotechnology Research Center, Academia Sinica, Taiwan

Exposomics Research Laboratory, Chung Shan Medical University, Taiwan

Dr. Yet-Ran Chen E-mail: yetran@gate.sinica.edu.tw

Mr. Wei-Hung Chang E-mail: whchang@gate.sinica.edu.tw **Dr. Mu-Rong Chao** E-mail: mrchao@csmu.edu.tw

Dr. Chiung-Wen Hu E-mail: windyhu@csmu.edu.tw

Dr. Yuan-Jhe Chang E-mail: jeffchang@csmu.edu.tw